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Abstract
If the physical agent (the ‘pointer’, or ‘cursor’, or ‘clocking mechanism’)
that sequentially scans the T lines of a long computer program is a microscopic
system, two quantum phenomenabecome relevant: spreading of the probability
distribution of the pointer along the program lines, and scattering of the
probability amplitude at the two endpoints of the physical space allowed for its
motion.

We show that the first effect determines an upper bound O
(
T − 2

3
)

on the
probability of finding the pointer exactly at the END line.

By adding an adequate number δ of further empty lines (‘telomers’), one
can store the result of the computation up to the moment in which the pointer
is scattered back into the active region. This leads to a less severe upper bound
O(

√
δ/T ) on the probability of finding the pointer either at the END line or

within the additional empty lines.
Our analysis is performed in the context of Feynman’s model of quantum

computation, the only model, to our knowledge, that explicitly includes a
physically plausible quantum clocking mechanism in its considerations.

PACS numbers: 03.67.Lx, 03.65.Ta

1. Introduction

It has been observed by Margolus [1] that Feynman [2], in his model of a quantum computer,
‘managed to arrange for all the quantum uncertainty [ . . . ] to be concentrated in the time taken
for the computation to be completed, rather than in the correctness of the answer’. In this
paper we try to contribute to a quantitative assessment of this time uncertainty.

Recent work by Levitin and Margolus [3] relates the maximum rate of information
processing by a quantum computer to the available, conserved, energy. It is therefore of some
theoretical interest to revisit a model, such as Feynman’s, based on a closed system, evolving
according to a time-independent and, therefore, conserved Hamiltonian.

The doubt has been raised by Alicki [4] that ‘the idea that the physical time [ . . . ]
of computation is proportional to the complexity [ . . . ] is only true for the existing digital
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computers which are ensembles of controlled bistable elements which [ . . . ] can literally
mimic logical operations’.

Feynman’s model provides an ideal context for the study of this issue: timing is modelled
by a cursor, which jumps along a sequence of sites, indicating that the corresponding discrete
operations should be applied. The cursor itself is treated as a quantum dynamical system,which
imposes limitations on our ability to know, without performing a measurement, whether the
computation has finished. We show that in this model, there is a ‘probabilistic time overhead’
due to the fact that at no instant of time the probability that the computation turns out to be
completed is equal to 1.

In Feynman’s model, the sequential application, in the correct order, of T reversible
primitives to the input/output register requires the introduction of at least x0 = T + 1 program
counter sites. At the beginning of a computation an assigned input is written on the input/output
register, and the cursor is placed at site number 1; as the cursor jumps from site j to site j + 1,
the jth primitive is applied. If at any time t the cursor is found, as the result of the first
measurement of its position, to be at site x0, then the desired output turns out to be written on
the input/output register.

We call Q(t) the position of the cursor at time t; the issue of optimally choosing the
time toptimal(x0) at which the first position measurement is performed, in order to maximize
the probability P(Q(t) = x0), has been discussed by Gramß [5]. It turns out that with a
convenient choice of the unit of time,

toptimal(x0) = x0 + const x
1
3

0 . (1.1)

Calling p1(x0) the maximum of P(Q(t) = x0) attained at this instant, we wish to show that

p1(x0) � 8

x
2
3

0

. (1.2)

This dismayingly severe upper bound can be somewhat relaxed if one accepts Feynman’s
suggestion [2] of improving the action of his computer by the addition of a ‘telomeric’ chain
of δ sites on the right of site x0: during its jumps between sites of the telomeric chain, the cursor
keeps applying the identity primitive, thus, in effect, storing the result of the computation until
it is reflected back into the non-telomeric region.

We call p1(x0, δ) the probability of finding, at an optimally chosen time toptimal(x0, δ), the
cursor in {x0, . . . , x0 + δ} and, therefore, of finding that the computation has been completed.
We show that, for x0 � 1 and δ � 1, p1(x0, δ) satisfies the approximate equality

p1(x0, δ) ≈ 1 − 2

π


arcsin

(
1

1 + 2δ/x0

)
−

(
1

1 + 2δ/x0

) √
1 −

(
1

1 + 2δ/x0

)2

 . (1.3)

For small values of the ratio δ/x0 one can also write the more expressive approximate equality

p1(x0, δ) ≈ 8

π

√
δ

x0
. (1.4)

The message carried by (1.2) and (1.3) is best illustrated by a numerical example. Suppose
the computation at hand requires a number of steps such that x0 ≈ 109; inequality (1.2) says
that in the absence of telomers, at no instant of time the probability of finding the computation
completed is larger than 10−5 (for short, reversible quantum computation with a quantum
clocking mechanism is practically impossible without telomers); the approximate equality
(1.3) says, in turn, that the probability of finding the computation completed can, at a suitably
chosen instant of time, be made close to 1 provided the ratio δ/x0 is large enough: for the
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(a) (b)

(c)

Figure 1. P(x0 � Q(t) � x0 + δ) as a function of time, computed using Gramß’ explicit solution of
the Schrödinger equation for the Feynman quantum computer. The horizontal lines are the upper
bounds obtained in the following sections. In all frames x0 = 100. (a) δ = 0; (b) δ = 20; (c) the
initial parts of frames (a) and (b) are here shown together with the similar graphs corresponding to
the cases δ = 40, 60, 80.

numerical example at hand this probability can be made close to 0.9 for δ ≈ 3.4×108, or close
to 0.99 for δ ≈ 1.2 × 109 (short, reversible quantum computation with a quantum clocking
mechanism is practically possible provided sufficient space resources are available). Further
examples of the meaning of (1.2) and (1.3) are summarized in figure 1.

Before going into the asymptotic estimates for large values of x0 leading to (1.2) and
(1.3) we wish to observe that the phenomenon studied in this paper (the uncertainty on
whether the computation has finished) already presents itself in such an elementary task as the
implementation of the CNOT gate. We examine this case in all detail in order, mainly, to give
a precise physical idea of the computer architecture to which our considerations apply.

We use the following notation for the CNOT function:

CNOT : (z1, z2) ∈ {−1, 1}2 → (
z1,

(
1 − 2δz1,1

)
z2

)
(1.5)

(‘flip the controlled bit z2 if and only if the controlling bit z1 has the value +1’).
Feynman [2] proposed the following Hamiltonian, diagrammatically represented in

figure 2, for the quantum reversible implementation of the CNOT primitive:

HCNOT = σ−(1)τ−(1)τ+(2) + σx(2)τ−(2)τ+(3) + σ+(1)τ−(3)τ+(6) + σ+(1)τ−(1)τ+(4)

+ Iτ−(4)τ+(5) + σ−(1)τ−(5)τ+(6) + Hermitian conjugate. (1.6)

The six spin-1/2 systems τ (1), τ (2), . . . , τ (6), forming the ‘cursor’, play here the role of a
clocking and synchronization apparatus, scaled down to the quantum regime.
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Figure 2. This figure is a reproduction of figure 8 of [2], adapted to our notations.

The operators τ±(j) = (τx(j) ± iτy(j))/2 are the raising and lowering operators for the
z-components of the cursor spins.

The two spin-1/2 systems σ(1), σ(2) constitute the ‘register’, σ(1) being the controlling
q-bit, σ(2) the controlled one. The operators σ±(j) = (σx(j) ± iσy(j))/2 are the raising and
lowering operators for the z-components of the register spins.

The operator N = ∑6
k=1(1 + τ3(k))/2 commutes with HCNOT. By a suitable choice of the

initial condition, we are going to restrict our considerations to the eigenspace belonging to the
eigenvalue 1 of N. It is, in this subspace, useful to introduce the operator

Q =
6∑

k=1

k
1 + τ3(k)

2
(1.7)

to be thought as the ‘position operator’ for the cursor.
Figure 2 provides the basic intuition for understanding the time evolution under HCNOT

of an initial condition being a simultaneous eigenstate of σz(1), σz(2) and Q, belonging to the
eigenvalue 1 of Q: it calls our attention to the following four possible classical computational
paths:


�(+1,+1) = (((+1, +1), 1), ((−1, +1), 2), ((−1,−1), 3), ((+1,−1), 6))

�(+1,−1) = (((+1,−1), 1), ((−1,−1), 2), ((−1, +1), 3), ((+1, +1), 6))

�(−1,+1) = (((−1, +1), 1), ((+1, +1), 4), ((+1, +1), 5), ((−1, +1), 6))

�(−1,−1) = (((−1,−1), 1), ((+1,−1), 4), ((+1,−1), 5), ((−1,−1), 6)).

(1.8)

For an intuitive motivation of the interest of these paths we refer the reader to Feynman’s
presentation of figure 8 of [2].

The path �(+1,+1), for example, is to be read in the following way:

• start at �(+1,+1)(1) = ((+1, +1), 1), with both register spins ‘up’ and cursor at position 1;
• move to �(+1,+1)(2) = ((−1, +1), 2), with the controlling spin flipped and cursor at

position 2;
• move to �(+1,+1)(3) = ((−1,−1), 3), with controlled spin flipped and cursor at position 3;
• stop at �(+1,+1)(4) = ((+1,−1), 6), with controlling spin restored to the initial value and

cursor at position 6.

Note that the paths starting with the controlling spin ‘down’ take, instead, the lower route
in figure 2. In this lower route, as compared with the upper route, the NOT primitive σx(2)

is substituted by the identity primitive I: this plays the role of a delay line, having the role of
making all the computational paths of the same length 4.

For each computational path, at step 4, and only at that step, the content of the register is
the CNOT of its content at step 1.
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The semiclassical intuition developed up to this point is confirmed by the explicit solution
of the Schrödinger equation

i
d

dt
|ψ(t)〉 = −λ

2
HCNOT|ψ(t)〉 (1.9)

(where we have, for convenience, written a coupling constant as −λ/2) under an initial
condition of the form

|ψ(0)〉 = |σz(1) = z1, σz(2) = z2,Q = 1〉 ≡ |((z1, z2), 1)〉. (1.10)

Such a solution can be written in the form

|ψ(t)〉 =
4∑

j=1

γ (t, j ; 4)
∣∣�(z1,z2)(j )

〉
(1.11)

where the amplitudes γ do not depend on the initial condition (z1, z2) imposed on the
z-components of the register spins and depend on the computation being performed only
through the length (4 in the example at hand) of the computational paths.

From the form of solution (1.11) and from the fact that only at step 4 the content of the
register is the CNOT of its content at step 1, we see that at every time t > 0 the conditional
probability, given that a measurement of Q has given the value 4, that a measurement of the
z-components of the two register spins gives, respectively, z′

1 = z1 and z′
2 = (

1 − 2δz1,1
)
z2 is

equal to 1: there is no uncertainty in the correctness of the answer.
The only uncertainty is in the probability |γ (t, 4; 4)|2 of finding the cursor in position 4.

We claim that for no value of t this probability takes the value 1.
Indeed it can be shown, by explicit integration of (1.9) and (1.10), that

γ (t, 4; 4) = i

(
cos

(
λt

√
5

4

)
sin

(
λt

4

)
− 1√

5
cos

(
λt

4

)
sin

(
λt

√
5

4

))
. (1.12)

Therefore |γ (t, 4; 4)|2 reaches its local maxima at the points tk = 4πk/(λ
√

5), k being an
integer, where it takes the values

|γ (tk, 4; 4)|2 = sin2

(
kπ√

5

)
< 1. (1.13)

We observe, incidentally, that while inequality (1.2) becomes trivial for x0 < 23, inequality
(1.13) gives an example of the possibility, for such small values of x0, of proving more stringent
upper bounds, without making recourse to asymptotic estimates.

Gramß [6] gave numerical and graphical evidence of the fact that the maximum of the
probability to observe the completion of a computation on a Feynman computer decreases
when the number of elementary gates increases. The issue of this paper is to give upper bounds
and asymptotic estimates for this probability.

The paper is organized as follows. In section 2 we review Gramß’ solution [5] of the
Schrödinger equation for the Feynman quantum computer and, by the simple artifice of
studying its limit as the number of sites tends to infinity, we single out the physical effect
which is at the root of the above inequalities: the spreading of the wave packet describing
the quantum motion of the cursor. In section 3 we deal with the technicalities involved in
reinstating the reflecting boundary condition on the rightmost site of a finite chain of program
counter sites. Section 4 addresses the issue of the comparison with a ‘standard’ model of
quantum computation, such as that of quantum circuits, and discusses the consequences of the
upper bounds (1.2)–(1.4) on some quantum algorithms.

Some technical points have been collected in the appendices.
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2. The semi-infinite clock

It is important to emphasize that, in Feynman’s architecture, the motion of the cursor is
independent of the computation being performed.

This fact has been observed in [2, 7] and is reviewed in some detail in appendix A for the
case in which the motion of the cursor is restricted to jumps between nearest-neighbour sites.

The example of the CNOT primitive given in the introduction,easily extended to the Toffoli
primitive, shows that the above statement extends to the case in which conditional jumps to
non-nearest-neighbour sites are required, provided all computational paths are made of the
same length by the introduction of suitable delay lines or, equivalently stated in Feynman’s
suggestive terminology, by suitable ‘impedance matching in transmission lines’.

The motion of the cursor along a computational path is described (calling 	s =
{1, 2, . . . , s} the finite collection of sites on which it takes place) by the following Schrödinger
equation:

i
d

dt
ψ(t, x; s) = −1

2
(ψ(t, x − 1; s) + ψ(t, x + 1; s)) x ∈ 	s (2.1)

ψ(t, 0; s) = 0 (2.2)

ψ(t, s + 1; s) = 0. (2.3)

We refer the reader to [8] for a discussion of the relevance of equation (2.1) on an infinite
lattice (without, namely, the boundary conditions (2.2) and (2.3) which play a prominent role
in our analysis) to the contemporary theory of continuous time quantum random walks.

With an eye to a conceivable physical implementation of a quantum clocking mechanism,
we wish to recall that (2.1) was proposed by Feynman himself [9] as a model of the motion of
excitations along a one-dimensional crystal.

A great deal of physical insight about the system described by (2.1)–(2.3) can be gained
from the Ehrenfest equation of motion: the expectation value of the position of the cursor

µ(t; s) =
s∑

x=1

x|ψ(t, x; s)|2 (2.4)

satisfies the equation

d2µ(t; s)

dt2
= 1

2
(|ψ(t, 1; s)|2 − |ψ(t, s; s)|2). (2.5)

The mean motion of the cursor is inertial (after all, (2.1) is a lattice version of the free
Schrödinger equation) as long as there is no significant unbalance between the probability of
finding it in the initial site 1 and the probability of finding it in the final site s.

Equations (2.1)–(2.3) have been extensively studied by Gramß [5]. In particular, their
solution under the initial condition

ψ(0, x; s) = δ1,x x ∈ 	s (2.6)

is explicitly given by

ψ(t, x; s) = 2

s + 1

s∑
n=1

exp[it cos(ϑ(n; s))] sin(ϑ(n; s)) sin(xϑ(n; s)) (2.7)

where

ϑ(n; s) = nπ

s + 1
. (2.8)
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In order to gain some intuition and to collect some mathematical facts about the behaviour
of solution (2.7), (2.8), we study, in this section, its limit as s → +∞. We shall refer to this
limit situation as to the case of a ‘semi-infinite clock’. The infinite chain of additional sites
appended to the right of the cursor plays, in this section, the purely technical role of making
the analysis simpler (in much the same way as a semi-infinite lines of nodes appended at the
starting node of a quantum decision tree is technically expedient in Farhi and Gutmann’s work
[10]); the effects of reflection at the rightmost site of a finite chain will be considered in the
next section.

Routine manipulations of the integral representation of the Bessel coefficients Jx(t) [11]
yield the following expression for the limit of ψ(t, x; s) as s → +∞:

ϕ(t, x) ≡def lim
s→+∞ ψ(t, x; s) = ix−1(Jx−1(t) + Jx+1(t)) = ix−1 2x

t
Jx(t). (2.9)

This can also be directly checked by observing that, because of the recurrence relations for
the Bessel functions, ix−1(Jx−1(t) + Jx+1(t)) is the solution of (2.1) under the single boundary
condition (2.2) and the initial condition (2.6).

Some elementary properties of the Bessel functions and their role in deriving the results
of this section and section 3 are, for the convenience of the reader, summarized in appendix B.

In this section we study some probabilistic aspects of the random variable Q(t) giving
the position of the cursor in the state ϕ(t, x), subject to the probability law

f (t, x) ≡def P(Q(t) = x) = 4x2

t2
Jx(t)

2 x = 1, 2, . . . . (2.10)

The expectation value

µ(t) = E(Q(t)) (2.11)

can be computed by the observation that, because of (2.5), it satisfies the differential equation

d2µ(t)

dt2
= 2

t2
J1(t)

2. (2.12)

As, at time t = 0, µ(t) reaches its absolute minimum equal to 1, the above equation is to be
solved under the initial condition

µ(0) = 1 µ′(0) = 0. (2.13)

The solution of (2.12) and (2.13) is a generalized hypergeometric function [12], which, in the
notation of [13], can be written as

µ(t) = HypergeometricPFQ[{−1/2}, {1, 2},−t2]. (2.14)

The second moment E(Q(t)2) can be easily computed using the series expansion of t4 in
terms of Bessel coefficients [11]. We then get

E(Q(t)2) = 1 + 3
4 t2. (2.15)

The variance of Q(t) is then easily computed as

var(Q(t)) = E(Q(t)2) − E(Q(t))2. (2.16)

The results (2.14) and (2.16) are summarized in figures 3 and 4, respectively.
It is not easy to write in a closed form the cumulative distribution function

F(t, x) ≡def P(Q(t) � x) = 4

t2

∑
1�k�x

k2Jk(t)
2 (2.17)
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(a) (b)

Figure 3. The behaviour of µ(t) as seen on two different time ranges. (a) For small values of t
there is a mean acceleration due to the ‘osmotic pressure’ corresponding to the fact that there is a
non-negligible probability mass at point x = 1. (b) For large values of t the mean motion of the
cursor is inertial, to a high degree of approximation: E(Q(t)) ≈ µ1t , with µ1 = 0.849.

(a) (b)

Figure 4. After an initial transient (frame (a)), the standard deviation σ(t) ≡def
√

var(Q(t))

grows, to a high degree of approximation, linearly. On the time scale of frame (b), σ(t) ≈ σ1t ,
with σ1 = 0.172.

of the random variable Q(t). Precisely because of the wave packet spreading observed in
figures 3 and 4, it is, however, easy to study the limit in law of the standardized random
variable

Q∗(t) ≡def
Q(t) − µ(t)

σ (t)
. (2.18)

The limit as t → +∞ of the cumulative distribution function P(Q∗(t) � z) turns out to be,
setting y(z) = µ1 + σ1 · z,

F ∗(z) ≡def lim
t→+∞ P(Q∗(t) � z) =




if z < −µ1

σ1
then 0

if z >
1 − µ1

σ1
then 1

else
2

π

(
arcsin y(z) − y(z)

√
1 − y(z)2

) (2.19)

where

µ1 = 8

3π
σ1 =

√
3

4
− µ2

1. (2.20)

The proof of (2.19) and (2.20) easily follows from the asymptotic expression (B.5) of the
Bessel functions and is outlined in appendix C.

Figure 5 gives an example of the approximate equality

P(Q∗(t) � z) ≈ F ∗(z). (2.21)
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Figure 5. F ∗(z) (the continuous line) as an approximation, for large t, to the cumulative distribution
function of Q∗(t); the dots refer to the explicitly computed case t = 100.

We are interested in the following questions: suppose that at time t = 0 the cursor of a
Feynman machine equipped with a semi-infinite clock is at the initial position x = 1; suppose
the computation requires the application of T primitives and that these primitives are applied
during the transitions between the sites 1, 2, . . . , x0 = T +1; suppose that during the successive
transitions the identity primitive is applied (the result is simply stored); suppose that, for some
x1 > x0, we have a detector able to check, at any instant t > 0 of our choice, whether
the cursor is in the assigned telomeric region {x0, x0 + 1, . . . , x1}; if the issue is to maximize
the probability that the result of a measurement of the projector χ{x0,x0+1,...,x1}(Q(t)) be 1, at
what time t is it most convenient to perform the measurement? How large is the maximum
value attained by this probability at this optimally chosen instant?

In the case 1 � x0 � x1, which requires only the consideration of large values of t, we
can give an answer by an analysis of the asymptotic formula

P(x0 � Q(t) � x1) ≈ F ∗
(

x1 − µ(t)

σ (t)

)
− F ∗

(
x0 − µ(t)

σ (t)

)

=




if x0 < t < x1 1 − 2

π

(
arcsin

(x0

t

)
−

(x0

t

)√
1 −

(x0

t

)2
)

if t � x1
2

π

(
arcsin

(x1

t

)
−

(x1

t

)√
1 −

(x1

t

)2
)

− 2

π

(
arcsin

(x0

t

)
−

(x0

t

) √
1 −

(x0

t

)2
)

.

(2.22)

Figure 6 gives an example of the application of (2.22)
Equality (2.22) suggests the maximum of the right-hand side (attained, as one would have

expected, at time t = x1) as an upper bound for the left-hand side:

P(x0 � Q(t) � x1) � 1 − 2

π


arcsin

(
x0

x1

)
−

(
x0

x1

) √
1 −

(
x0

x1

)2

 . (2.23)

It is convenient to write (2.23) in terms of the length of the computation, as measured by x0,
and of the length of the telomeric chain, as measured by δ = x1 − x0: the first term of the
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(a) (b)

Figure 6. (a) The right-hand side of (2.22) computed for x0 = 100 and x1 = 140. (b) The left-hand
side of (2.22) computed for the same values of x0 and x1: the exact result is superimposed to the
approximate result.

expansion of (2.23) in the ratio r = δ
x0

gives the inequality (significant for r < 0.3)

P(x0 � Q(t) � x0 + δ) � 1 − 2

π


arcsin

(
1

1 + δ/x0

)
−

(
1

1 + δ/x0

) √
1 −

(
1

1 + δ/x0

)2



� 4
√

2

π

√
δ

x0
. (2.24)

Note that the line of reasoning starting from (2.19) is based on the approximate treatment of
Q∗(t) as a continuous random variable. Therefore, our analysis does not properly cover the
case, δ = 0, of no telomers. However, this case can be analysed separately by considering that

dP(Q(t) = x0)

dt
= 2x0Jx0(t)(Jx0−2(t) − Jx0+2(t))

t
. (2.25)

Let τ (x0) be the value of t at which P(Q(t) = x0) attains its first (and for x0 � 1 absolute)
maximum. Then τ (x0) is the smallest positive solution of the equation

Jx0−2(t) = Jx0+2(t). (2.26)

For large values of x0 we have

τ (x0) ≈ x0 + cx
1
3
0 (2.27)

where ([11], p 521)

c ≈ 0.81. (2.28)

Therefore

P(Q(t) = x0) � 4Jx0

(
x0 + cx

1
3
0

)2
� 4

π

√
2

c

1

x
2
3
0

≈ 2

x
2
3

0

. (2.29)

In deriving (2.29), use has been made of the asymptotic expression (B.5) of Jx(t) for large
values of x < t .

Figure 7 shows that the upper bound

P(Q(t) = x0) � 2

x
2
3
0

(2.30)

becomes tight for large x0.
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Figure 7. Comparison between f (τ (x0), x0) = P (Q(τ(x0)) = x0) and its upper bound 2/x
2
3

0 .

3. The finite clock

The results of the previous section can be easily extended to the case of a finite clock
	s = {1, 2, . . . , s}, by applying the Jacobi expansion [11] to the term exp [it cos(ϑ(n; s))]
appearing in Gramß’ solution:

exp[it cos ϑ] =
+∞∑

k=−∞
ikeikϑJk(t). (3.1)

After some tedious algebra, this leads to the identity

ψ(t, x; s) = ϕ(t, x) +
∞∑

h=1

(ϕ(t, 2h(s + 1) + x) − ϕ(t, 2h(s + 1) − x)). (3.2)

We recall that ψ(t, x; s) is, under the initial condition (2.6), the probability amplitude of
finding the cursor at position x of a computational path involving a finite number s of steps
(the parameter s appears in the boundary conditions (2.2) and (2.3)). The function ϕ(t, x) has
been defined in (2.9) as ϕ(t, x) = lims→+∞ ψ(t, x; s) and its explicit expression in terms of
Bessel functions, ϕ(t, x) = ix−1(Jx−1(t) + Jx+1(t)), has been studied in the previous section.

Beyond the technicalities involved in (3.2), the physical idea is extremely simple: with
respect to the situation considered in the previous section, in which the wave packet starting
from site 1 inertially travelled towards +∞, the 0 boundary condition imposed at site s + 1
introduces the possibility that the wave packet be reflected back to the left, with the further
possibility of being scattered to the right because of the boundary condition imposed at site 0,
and so on.

With the help of (3.2), we study, first of all, Feynman’s original model without telomers:
the number s of sites is in this case exactly the minimum number x0 required by the computation
to be performed; the computation is completed at time t, by collapse of the wavefunction, if a
measurement of the projector χ{x0}(Q) on the state ψ(t, x; x0) gives the result 1.

This requires the study of ψ(t, x0; x0), which, using (3.2), can be written as

ψ(t, x0; x0) =
∞∑

k=0

(ϕ(t, (2k + 1)x0 + 2k) − ϕ(t, (2k + 1)x0 + 2(k + 1)))

= (ϕ(t, x0) − ϕ(t, x0 + 2)) + (ϕ(t, 3x0 + 2) − ϕ(t, 3x0 + 4)) + · · · . (3.3)
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(a)

(b) (c)

Figure 8. x0 = 20: (a) |ψ(t, x0; x0)|2 as a function of t; (b) |ϕ(t, x0) − ϕ(t, x0 + 2)|2 as a function
of t; (c) |ϕ(t, x0) − ϕ(t, x0 + 2) + ϕ(t, 3x0 + 2) − ϕ(t, 3x0 + 4)|2.

This expansion takes into account the successive reflections of the probability amplitude due
to the boundary conditions (2.2) and (2.3).

If x0 � 1, interference effects between the direct wave ϕ(t, x0) − ϕ(t, x0 + 2) and the
successive terms, corresponding to at least one reflection at the point x = 0, can be neglected.
In particular, the position and the height of the first maximum of |ψ(t, x0; x0)|2 are well
accounted for by the single term (ϕ(t, x0) − ϕ(t, x0 + 2)) in (3.3).

The example of figure 8 shows that additional terms are only needed to account for later
and lower probability pulses. If x0 � 1, the approximations

|ψ(t, x0; x0)|2 ≈ |ϕ(t, x0) − ϕ(t, x0 + 2)|2 = |Jx0−1(t) + 2Jx0+1(t) + Jx0+3(t)|2 ≈ 4|ϕ(t, x0)|2
(3.4)

together with inequality (2.29) provide the upper bound

|ψ(t, x0; x0)|2 � 8

x
2
3
0

. (3.5)

By the same technique, based on (3.1), we can handle the presence of a telomeric chain
extending from x0 to x1 = s = x0 + δ. As long as t is so small that multiple reflections can be
neglected, we can write

ψ(t, x; x1) ≈ ϕ(t, x) − ϕ(t, 2(x1 + 1) − x) ≡ ψ1(t, x; x1). (3.6)

Figure 9 shows that the terms neglected in (3.6) account only for multiple reflections.
Setting

η(t, x) = Jx−1(t) + Jx+1(t) (3.7)
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(b) (c)

(a)

Figure 9. x0 = 20, x1 = 30: (a) Px1 (x0 � Q(t) � x1) ≡ ∑x1
x=x0

|ψ(t, x; x1)|2 as a function

of t; (b)
∑x1

x=x0
|ψ1(t, x; x1)|2 as a function of t; (c)

∑x1
x=x0

|ψ1(t, x; x1) + ϕ(t, 2(x1 + 1) + x) −
ϕ(t, 4(x1 + 1) − x)|2 as a function of t.

for t < 2x1 + x0, we can write

Px1(x0 � Q(t) � x1) ≡
x1∑

x=x0

|ψ(t, x; x1)|2 ≈
x1∑

x=x0

|ψ1(t, x; x1)|2

=
x1∑

x=x0

(η(t, x)2 + η(t, 2(x1 + 1) − x)2)

+ 2
x1∑

x=x0

(−1)x1−xη(t, x)η(t, 2(x1 + 1) − x)

=
x0+2(δ+1)∑

x=x0

η(t, x)2 − η(t, x1 + 1)2

+
δ∑

ε=0

(−1)δ−εη(t, x0 + ε)η(t, x0 + 2(δ + 1) − ε). (3.8)

For 1 � x0 � x1 the contribution of the last two terms in (3.8) is negligible; the first sum can,
in turn, be computed by the asymptotic methods of section 2. This leads to

Px1(x0 � Q(t) � x1) ≈ F ∗
(

x1 + δ − µ(t)

σ (t)

)
− F ∗

(
x0 − µ(t)

σ (t)

)
. (3.9)

Figure 10 gives an idea of the approximations involved in (3.9) and of its range of validity.
The maximum of the right-hand side of (3.9) is reached at t = x0 + 2δ. This leads to
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Figure 10. x0 = 100, x1 = 140. The thick, dashed line is the graph of the right-hand side of (3.9)
as a function of t. The thin, continuous line is the graph of the left-hand side.

the upper bound

Px1(x0 � Q(t) � x0 + δ)

� 1 − 2

π


arcsin

(
1

1 + 2δ/x0

)
−

(
1

1 + 2δ/x0

) √
1 −

(
1

1 + 2δ/x0

)2

 (3.10)

where, we recall, δ = x1 − x0.
The above inequality yields in turn the following:

Px1(x0 � Q(t) � x1) � 8

π

√
δ

x0
(3.11)

which is significant for δ
x0

< 0.15.

4. Discussion

The physics behind the formalism of the two previous sections is elementary:

• The average direction of the arrow of time (as operationally defined by the mean velocity
of the cursor) is determined by the spatial non-uniformity of the probability distribution
of Q(t). When this distribution is highly concentrated near one endpoint, it is very likely
that the cursor tends to move towards the other endpoint of the available space.

• For most of the time used to complete a long computation, the cursor moves as a free
Schrödinger particle, and hence is subject to spreading of the wave packet: even when the
probability of finding it in the telomeric region {x0, . . . , x1} reaches its maximum value,
there is a non-negligible left tail in its probability distribution, extending into the region
{1, . . . , x0 − 1} that corresponds to an unfinished computation.

From this point of view the standard (‘static’) paradigm of quantum computing appears
as an idealization. According to this paradigm, the successive unitary transformations on the
state of the input/output register are applied one by one by an outside agent; moreover, it is
taken for granted that there is an instant at which the computation is, with certainty, completed
and after which it will never be undone. With respect to Feynman’s ‘dynamical’ paradigm,
the idealization involved in the ‘static’ paradigm corresponds to considering the limit case
δ → ∞ of an infinite amount of space available to store the result, and of an infinite amount
of time available for the result to be stored with probability 1.
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Whether this idealization is acceptable depends on the physical situation. Consider, for
instance, the Deutsch–Joza problem [14]. As the reader will recall, the problem is to recognize
whether a given Boolean function f is constant or balanced. In the static paradigm this can be
done with certainty in one computational step by applying a unitary transformation involving,
among other things, a computation of f itself. Doing the same on a Feynman machine is
not an absolute impossibility because there are cases in which |ψ(t, s; s)|2 can take the value
1, namely, the cases s = 2 and s = 3. Namely, on a Feynman machine, one can solve
the Deutsch–Joza problem with certainty in the single step allowed if f is an ‘elementary’
primitive that the cursor can apply in a single transition, or in very few transitions. If many bits
are involved, this amounts to assuming that one has solved the unrealistically hard problem of
implementing the correct many-body interaction among the many q-bits. If, vice versa, one is
forced to decompose this interaction into x0 � 1 few-body interaction terms, one has only a

probability O
(
x

− 1
2

0

)
of solving the problem in one step. This probability can be made by the

addition of a suitable telomeric chain, as close to 1 as we wish; but no finite telomeric chain
will bring it to the value 1.

Consider, from the same point of view, Grover’s database search algorithm [15]: finding
the single point in a Boolean function f of ν variables granted to take the value 1 requires,
among other things, 2

ν
2 computations of f . Taking for granted that a single computation of

f can be implemented as a one-step primitive on a Feynman machine: the problem remains
(unless one allows for a telomeric chain of length proportional to 2

ν
2 ) that the probability of

finding, upon the first measurement of the position of the cursor, that all the x0 = 2
ν
2 steps

have been completed is O
(
2− ν

4

)
. Suppose one adopts the strategy of resetting the machine

after each failed attempt to find the cursor in the telomeric region; according to this strategy
one has to perform, before the arrival of the first success, a geometrically distributed random
number of attempts, with mean value �

(
2

ν
4

)
, each attempt lasting a time 2

ν
2 .

Scaling the clocking mechanism down to the quantum regime does seem, in conclusion,
to be adding some additional computational costs (in terms of time, space and probability) to
existing quantum algorithms.

How would these costs increase if one allowed for some random imperfections with
respect to the extremely regular ‘crystalline structure’ of the clock considered here? Is it
possible to give a quantitative assessment of Feynman’s guess [2] that these imperfections
would cause ‘considerable havoc’?

Appendix A. Feynman’s cursor model

Let N be a positive integer. Let A be an assigned permutation of {1, 2, . . . , N}. Having
fixed an N-dimensional Hilbert space HN and having assigned there an orthonormal basis
|1〉, |2〉, . . . , |N〉, define a linear unitary operator A through the following action on the vectors
of the assigned basis: for y ∈ {1, 2, . . . , N}

A|y〉 = |A(y)〉. (A.1)

LetA = As−1 ◦· · ·◦A2◦A1 be a decomposition of A into the product of a certain number s−1
of ‘simpler’ permutations (say, for instance, cycles of length 2). Set, for i ∈ {1, 2, . . . , s − 1}
and y ∈ {1, 2, . . . , N}

Ai|y〉 = |Ai(y)〉. (A.2)

It is then

A = As−1 · · · A2A1. (A.3)
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Suppose the problem of physically implementing the action of each of the operators Ai has
been solved. Feynman’s cursor model addresses the issue of physically implementing the
action of their product, in the correct order giving A.

This is done by considering, together with the original system with state space HN (the
‘register’), another quantum system (the ‘cursor’) having an s-dimensional state space Hs .
Having chosen an orthonormal system |1〉c, |2〉c, . . . , |s〉c in Hs , the time evolution of the
overall system is supposed to be determined by a Hamiltonian operator of the form

HA = −K

2

s−1∑
j=1

(Aj ⊗ |j + 1〉c c〈j | + A∗
j ⊗ |j 〉c c〈j + 1|) (A.4)

where K is a coupling constant.
Incidentally, it is the form (A.4) of the Hamiltonian that gives a precise meaning to the

requirement made above thatA = As−1◦· · ·◦A2◦A1 be a decomposition ofA into the product
of ‘simpler’ permutations: Feynman shows that in a physical implementation of register and
cursor as a collection of spin-1/2 systems, one can choose this decomposition in such a way
that in each addendum in HA there appears the product of two components of spins belonging
to the cursor and at most one component of a spin belonging to the register.

Consider the Schrödinger equation

i
d

dt
|φ(t)〉 = HA|φ(t)〉 (A.5)

under an initial condition of the particular form

|φ(0)〉 = |φ0〉 ⊗ |1〉c (A.6)

where |φ0〉 ∈ HN and |1〉c ∈ Hs .
It is easy to check that the form of the solution of (A.5) and (A.6) is provided by the

following ansatz:

|φ(t)〉 =
s∑

k=1

γ (t, k; s)Ak−1 · · ·A1|φ0〉 ⊗ |k〉c (A.7)

(where, of course, the empty product of operators corresponding to k = 1 is to be read as the
identity operator).

It is, indeed, sufficient to impose the initial condition

γ (0, k; s) = δ1,k (A.8)

in order to satisfy (A.6), and the differential equations

i
d

dt
γ (t, 1; s) = −K

2
γ (t, 2; s) (A.9)

i
d

dt
γ (t, x; s) = −K

2
(γ (t, x − 1; s) + γ (t, x + 1; s)) for 1 < x < s (A.10)

i
d

dt
γ (t, s; s) = −K

2
γ (t, s − 1; s) (A.11)

in order to satisfy (A.5). This fact can be easily proved using the unitarity of the operators Ai .
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The main point, in the above equations, is that the evolution of the probability amplitude
γ (t, x; s) of finding the cursor at position x does not depend on the primitives Ai that it applies
to the register.

Appendix B. Bessel functions of the first kind

For integer values of k, the Bessel functions of the first kind and order k, or Bessel coefficients,
Jk(t) are defined as the coefficients of the Laurent expansion

exp

(
1

2
t

(
w − 1

w

))
=

+∞∑
k=−∞

wkJk(t). (B.1)

Identity (3.1) is just the above expression in the case w = i exp(iϑ).
If one takes, instead, w = exp(iϑ) and, for a fixed integer value of x, multiplies both

sides of (B.1) by exp(−ixϑ), one obtains, by integration over (−π, π), a quick (heuristic)
derivation of the integral representation used in deriving (2.9):

Jx(t) = 1

2π

∫ π

−π

exp(it sin(ϑ) − xϑ) dϑ. (B.2)

The limit relation in (2.9) is then simply, as s → ∞, the convergence of the right-hand side of
(2.7), seen as a Riemann sum, to an integral.

The recurrence relation used in the last step (2.9)

Jx−1(t) + Jx+1(t) = 2x

t
Jx(t) (B.3)

is obtained by derivation of (B.1) with respect to w.
Derivation with respect to t gives, similarly, the recurrence relation

Jx−1(t) − Jx+1(t) = 2
dJx(t)

dt
. (B.4)

Figure 11 gives an idea of the behaviour of Jx(t) as a function of t. Figure 12, in turn, gives
an idea of the accuracy of the following asymptotic expression of the Bessel functions of large
order and large argument [11, 12] used in section 2:

Jx(t) ≈




exp

(√
x2 − t2 − x arctanh

(√
1 − t2

x2

))
√

2π(x2 − t2)1/4
if t < x

�(1/3)

22/331/6πt1/3
+

31/6�(2/3)(t − x)

21/3πt2/3
if t ≈ x

√
2/π cos

(
π

4
−

√
t2 − x2 + x arctan

(√
t2

x2
− 1

))

(t2 − x2)1/4
if t > x.

(B.5)
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Figure 11. The graph of J10(t) as a function of t.

Figure 12. The right-hand side of (B.5) for x = 10, represented by the dashed curve, is
superimposed to the graph of J10(t).

Appendix C. Derivation of (2.19) and (2.20)

The values that Q∗(t) can take are separated by a spacing 1/σ(t) going to 0 as t → ∞; it is,
moreover, Q∗(t) � (1 − µ(t))/σ (t). We treat, then, Q∗(t) as a continuous random variable
having a probability density of the form

ρQ∗(t, z) =

if z > (1 − µ(t))/σ (t) then σ(t)4

(
µ(t) + zσ(t)

t

)2

Jµ(t)+zσ (t)(t)
2

else 0.

(C.1)

For z < (t − µ(t))/σ (t), we can use the asymptotic expression of Jx(t) given by (B.5) and
holding for t > x.

Setting

y(t, z) = µ(t) + zσ(t) (C.2)
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we obtain, after some algebra, and neglecting a term which, for large t, is a rapidly oscillating
function of z, the following approximate equality,

ρQ∗(t, z) ≈ 4σ(t)

πt

(
y(t, z)

t

)2 1√
1 −

(
y(t,z)

t

)2
(C.3)

holding for (1 − µ(t))/σ (t) < z < (t − µ(t))/σ (t).
Setting

µ1 = lim
t→∞

µ(t)

t
(C.4)

σ1 = lim
t→∞

σ(t)

t
(C.5)

one gets, for large values of t,

ρQ∗(t, z) ≈

if −µ1/σ1 < z < (1 − µ1/σ1) then

4σ1

π

(µ1 + zσ1)
2√

1 − (µ1 + zσ1)2

else 0.

(C.6)

(2.19) follows from (C.6) by integration with respect to z.
(2.20) follows from the requirements that the mean and the variance of the probability

density appearing on right-hand side of (C.6) be, respectively, 0 and 1.
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